posted on 2024-10-31, 15:34authored byDonald Metzler, Trevor Strohman, Bruce Croft
Many traditional information retrieval models, such as BM25 and language modeling, give good retrieval effectiveness, but can be difficult to implement efficiently. Recently, document-centric impact models were developed in order to overcome some of these efficiency issues. However, such models have a number of problems, including poor effectiveness, and heuristic term weighting schemes. In this work, we present a statistical view of document-centric impact models. We describe how such models can be treated statistically and propose a supervised parameter estimation technique. We analyze various theoretical and practical aspects of the model and show that weights estimated using our new estimation technique are significantly better than the integer-based weights used in previous studies.