This paper proposes an adaptive integral backstepping hybrid terminal sliding-mode control for permanent magnet synchronous motors (PMSMs). The adaptive integral backstepping method based on the implicit Lyapunov function is utilized to design the position controller of a PMSM system, which can compensate the parameter uncertainties and the load disturbance of the system. The current controller of the PMSM system is designed using both techniques, i.e. nonsingular terminal sliding-mode (NTSM) and high-order sliding-mode (HOSM). The NTSM is used to improve the robustness and response speed of the system. Meanwhile, the HOSM is adopted to eliminate the chattering phenomenon and soften the control signal. Simulation results are presented to validate the proposed method.
History
Start page
272
End page
276
Total pages
5
Outlet
Proceedings of the 11th international Workshop on Variable Structure systems (VSS2010)