RMIT University
Browse

Avionics sensor fusion for small size unmanned aircraft Sense-and-Avoid

Download (1.11 MB)
conference contribution
posted on 2024-11-23, 06:03 authored by Subramanian Ramasamy, Roberto SabatiniRoberto Sabatini, Alessandro GardiAlessandro Gardi
Cooperative and non-cooperative Sense-and-Avoid (SAA) systems are key enablers for Unmanned Aircraft (UA) to routinely access non-segregated airspace. In this paper some state-of-the-art cooperative and non-cooperative sensor and system technologies are investigated for small size UA applications, and the associated multisensor data fusion techniques are discussed. Non-cooperative sensors including both passive and active Forward Looking Sensors (FLS) and cooperative systems including Traffic Collision Avoidance System (TCAS), Automatic Dependent Surveillance - Broadcast (ADS-B) system and/or Mode C transponders are part of the proposed SAA architecture. After introducing the SAA system processes, the key mathematical models for data fusion are presented. The Interacting Multiple Model (IMM) algorithm is used to estimate the state vector of the intruders and this is propagated to predict the future trajectories using a probabilistic model. Adopting these mathematical models, conflict detection and resolution strategies for both cooperative and un-cooperative intruders are identified. Additionally, a detailed error analysis is performed to determine the overall uncertainty volume in the airspace surrounding the intruder tracks. This is accomplished by considering both the navigation and the tracking errors affecting the measurements and translating them to unified range and bearing uncertainty descriptors, which apply both to cooperative and non-cooperative scenarios. Detailed simulation case studies are carried out to evaluate the performance of the proposed SAA approach on a representative host platform (AEROSONDE UA) and various intruder platforms, including large transport aircraft and other UA. Results show that the required safe separation distance is always maintained when the SAA process is performed from ranges in excess of 500 metres.

History

Related Materials

  1. 1.
  2. 2.
    ISBN - Is published in 9781479920693 (urn:isbn:9781479920693)

Start page

271

End page

276

Total pages

6

Outlet

Proceedings of 2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014

Editors

Domenico Accardo

Name of conference

2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace

Publisher

IEEE

Place published

United States

Start date

2014-05-29

End date

2014-05-30

Language

English

Copyright

© 2014 IEEE

Notes

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Former Identifier

2006049862

Esploro creation date

2020-06-22

Fedora creation date

2015-01-22

Open access

  • Yes