This paper presents the conceptual design of a low-cost measurement system for the dete1mination of aviation-related pollutant concentrations in dense air traffic areas. The proposed bistatic Light Detection and Ranging (LIDAR) system consists of two noncollocated components. The source component consists of a tuneable laser emitter, which can either be installed on a Remotely Piloted Aircraft System (RP AS) or operated from fixed and movable surface installations. The sensor component is constituted by a target surface calibrated for reflectance and a rail-mounted visible or infrared camera calibrated for radiance. The system perfmms Differential Absorption LIDAR (DIAL) measurements. The relevant oppo1t1mities and challenges, and the viability of the system in the intended operational environments are discussed. N1m1erical simulation results show promising perfmmances in term of error expected error budget even in degraded meteorological conditions, which are comparable to the more complex and relatively costly monostatic LIDAR techniques cmTently available.