On Data-Driven Approaches to Head-Related-Transfer Function Personalization
conference contribution
posted on 2024-11-03, 12:54authored byHaytham AbokelaHaytham Abokela, Laurens van der Maaten, Griffin Romigh, Ravish Mehra
Head-Related Transfer Function (HRTF) personalization is key to improving spatial audio perception and localization in virtual auditory displays. We investigate the task of personalizing HRTFs from anthropometric measurements, which can be decomposed into two sub tasks: Interaural Time Delay (ITD) prediction and HRTF magnitude spectrum prediction. We explore both problems using state-of-the-art Machine Learning (ML) techniques. First, we show that ITD prediction can be significantly improved by smoothing the ITD using a spherical harmonics representation. Second, our results indicate that prior unsupervised dimensionality reduction-based approaches may be unsuitable for HRTF personalization. Last, we show that neural network models trained on the full HRTF representation improve HRTF prediction compared to prior methods.