Conventional multi-objective Particle Swarm Optimization (PSO) algorithms aim to find a representative set of Pareto-optimal solutions from which the user may choose preferred solutions. For this purpose, most multi-objective PSO algorithms employ computationally expensive comparison procedures such as non-dominated sorting. We propose a PSO algorithm, Reference point-based PSO using a Steady-State approach (RPSO-SS), that finds a preferred set of solutions near user-provided reference points, instead of the entire set of Pareto-optimal solutions. RPSO-SS uses simple replacement strategies within a steady-state environment. The efficacy of RPSO-SS in finding desired regions of solutions is illustrated using some well-known two and three-objective test problems.
History
Start page
200
End page
209
Total pages
10
Outlet
Proceedings of the 7th International Conference on Simulated Evolution and Learning (SEAL 2008)
Editors
Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke, Yuhui Shi
Name of conference
The 7th International Conference on Simulated Evolution and Learning (SEAL 2008)