This paper proposes a novel method in order to obtain voxel-level segmentation for three fluid lesion types (IR-F/SRF/PED) in OCT images provided by the ReTOUCH challenge [1]. The method is based on a deep neural network consisting of encoding and de-coding blocks connected with skip-connections which was trained using a combined cost function comprising of cross-entropy, dice and adversarial loss terms. The segmentation results on a held-out validation set shows that the network architecture and the loss functions used has resulted in improved retinal fluid segmentation. Our method was ranked fourth in the ReTOUCH challenge.