nterest in voice recognition technologies for internet applications is growing due to the flexibility of speech-based communication. The major drawback with the use of sound for internet access with computers is that the commands will be audible to other people in the vicinity. This paper examines a secure and voice-less method for recognition of speech-based commands using video without evaluating sound signals. The proposed approach represents mouth movements in the video data using 2D spatio-temporal templates (STT). Zernike moments (ZM) are computed from STT and fed into support vector machines (SVM) to be classified into one of the utterances. The experimental results demonstrate that the proposed technique produces a high accuracy of 98% in a phoneme classification task. The proposed technique is demonstrated to be invariant to global variations of illumination level. Such a system is useful for securely interpreting user commands for internet applications on mobile devices.