RMIT University
Browse

A Bayesian network model to assess the public health risk associated with wet weather sewer overflows discharging into waterways

journal contribution
posted on 2024-11-01, 10:46 authored by Rebecca Goulding, Niranjali Jayasuriya, Edmund Horan
Overflows from sanitary sewers during wet weather, which occur when the hydraulic capacity of the sewer system is exceeded, are considered a potential threat to the ecological and public health of the waterways which receive these overflows. As a result, water retailers in Australia and internationally commit significant resources to manage and abate sewer overflows. However, whilst some studies have contributed to an increased understanding of the impacts and risks associated with these events, they are relatively few in number and there still is a general lack of knowledge in this area. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows is presented in this paper. The Bayesian network approach is shown to provide significant benefits in the assessment of public health risks associated with wet weather sewer overflows. In particular, the ability for the model to account for the uncertainty inherent in sewer overflow events and subsequent impacts through the use of probabilities is a valuable function. In addition, the paper highlights the benefits of the probabilistic inference function of the Bayesian network in prioritising management options to minimise public health risks associated with sewer overflows.

History

Journal

Water Research

Volume

46

Issue

16

Start page

4933

End page

4940

Total pages

8

Publisher

IWA Publishing

Place published

United Kingdom

Language

English

Copyright

© 2012 IWA Publishing

Former Identifier

2006034852

Esploro creation date

2020-06-22

Fedora creation date

2012-09-14

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC