RMIT University
Browse

A Novel Approach to Detect Programed Death Ligand 1 (PD-L1) Status and Multiple Tumor Mutations Using a Single Non–Small-Cell Lung Cancer (NSCLC) Bronchoscopy Specimen

journal contribution
posted on 2024-11-02, 11:38 authored by Amanda Vannitamby, Shona Hendry, Tanvi Makadia, Janine Danks, John Slavin, Louis Irving, Daniel Steinfort, Steven BozinovskiSteven Bozinovski
Multiple biomarkers are under evaluation to guide the use of immune checkpoint inhibitors in non–small-cell lung cancer (NSCLC), including programed death ligand 1 (PD-L1) tumor cell staining. We have developed a new approach that accurately quantifies PD-L1 status and identifies multiple mutations by using a single bronchoscopy specimen. A novel molecular marker was identified to detect the presence of malignant cells in radial endobronchial ultrasound bronchial brushings from NSCLC (n = 15) and benign (n = 13) nodules by quantitative real-time RT-PCR (RT-qPCR). The MMP9:TIMP3 transcript ratio was significantly increased in NSCLC and using receiver operating characteristic curve analysis accurately discriminated malignant and benign bronchoscopy specimens (area under the curve = 0.98; 95% CI, 0.93–1; P < 0.0001). Utilizing the same specimens, PD-L1 expression and multiple oncogenic mutations were detected by RT-qPCR and next-generation sequencing. A second archive of snap-frozen squamous cell carcinoma (n = 40) and control (n = 20) biopsies with matching formalin-fixed, paraffin-embedded slides were used to compare PD-L1 status by immunohistochemistry and RT-qPCR. The biopsy cohort confirmed that the MMP-9:TIMP3 ratio was predictive of malignancy and demonstrated that PD-L1 transcript expression was concordant with PD-L1 tumor cell membrane staining in NSCLC (Spearman r = 0.636, P < 0.0001). This rapid molecular approach can detect malignant cells and using the same single bronchoscopy specimen can generate high-quality unfixed nucleic acid that accurately quantify PD-L1 status and identify multiple oncogenic mutations.

Funding

National Health and Medical Research Council : http://purl.org/au-research/grants/nhmrc/GNT1142013

History

Journal

Journal of Molecular Diagnostics

Volume

21

Issue

2

Start page

186

End page

197

Total pages

12

Publisher

Elsevier

Place published

United States

Language

English

Copyright

Copyright © 2019 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

Former Identifier

2006091932

Esploro creation date

2020-06-22

Fedora creation date

2019-08-06

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC