RMIT University
Browse

A Review on the Impact of Outdoor Environment on Indoor Thermal Environment

journal contribution
posted on 2024-11-03, 11:06 authored by Yaolin Lin, Tao Huang, Wei Yang, Xiancun Hu, Chun Qing LiChun Qing Li
Outdoor environment exchanges heat with indoor environment, enabling pollutants to infiltrate indoors, affecting buildings’ energy efficiency, comfort, and indoor air quality. Investigating the impact of the outdoor environment on the indoor thermal environment is crucial. Firstly, this paper reviews the coupling method to link the outdoor environment with the indoor environment. Secondly, it examines the impact of the outdoor physical environment, including neighboring buildings, greening, road surface, water body, and sky, on the indoor thermal environment. During the hottest summer, an increase of 17% in trees can reduce indoor temperature by 1.1 °C. Thirdly, the impact of weather conditions, including outdoor temperature, outdoor humidity, external wind, global warming, extreme weather conditions, and solar radiation, on the indoor thermal environment is studied. Due to global warming, cooling energy consumption and heating energy consumption in 2050 could increase by 223% to 1050%, and heating demand could decrease by 36% to 58%. Finally, the impact of outdoor air pollution on indoor environment and energy consumption is analyzed. For every 75 μg/m3 increase in PM2.5 concentration, average power consumption could increase by 11.2%. Recommendations for future research are provided. This study contributes to the understanding of the outdoor–indoor thermal relationship and offers insights into enhancing indoor thermal comfort and reducing building energy consumption.

History

Related Materials

  1. 1.
    DOI - Is published in 10.3390/buildings13102600
  2. 2.
    ISSN - Is published in 20755309

Journal

Buildings

Volume

13

Number

2600

Issue

10

Start page

1

End page

26

Total pages

26

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006126614

Esploro creation date

2023-11-24

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC