A Western diet increases serotonin availability in rat small intestine
journal contribution
posted on 2024-11-01, 13:45authored byRebecca Bertrand, Sevvandi Senadheera, Irit Markus, Lu Liu, Lauren Howitt, H Chen, Timothy Murphy, Shaun Sandow, Paul BertrandPaul Bertrand
Diet-induced obesity is associated with changes in gastrointestinal function and induction of a mild inflammatory state. Serotonin (5-HT) containing enterochromaffin (EC) cells within the intestine respond to nutrients and are altered by inflammation. Thus, our aim was to characterize the uptake and release of 5-HT from EC cells of the rat ileum in a physiologically relevant model of diet-induced obesity. In chow-fed (CF) and Western diet-fed (WD) rats electrochemical methods were used to measure compression evoked (peak) and steady state (SS) 5-HT levels with fluoxetine used to block the serotonin reuptake transporter (SERT). The levels of mRNA for tryptophan hydroxylase 1 (TPH1) and SERT were determined by quantitative PCR, while EC cell numbers were determined immunohistochemically. In WD rats, the levels of 5-HT were significantly increased (SS: 19.2±3.7 µM; peak: 73.5±14.1 µM) compared with CF rats (SS: 12.3±1.8 µM; peak: 32.2±7.2 µM), while SERT-dependent uptake of 5-HT was reduced (peak WD: 108% of control versus peak CF: 212% control). In WD rats, there was a significant increase in TPH1 mRNA, a decrease in SERT mRNA and protein, and an increase in EC cells. In conclusion, our data show that foods typical of a Western diet are associated with an increased 5-HT availability in the rat ileum. Increased 5-HT availability is driven by the up-regulation of 5-HT synthesis genes, decreased re-uptake of 5-HT, and increased numbers and/or 5-HT content of EC cells which are likely to cause altered intestinal motility and sensation in vivo.