Activation of the surface dark-layer to enhance upconversion in a thermal field
journal contribution
posted on 2024-11-02, 07:58authored byJiajia Zhou, Shihui Wen, Jiayan Liao, Christian Clarke, Sherif Abbas, Wei Ren, Chao Mi, Fan Wang, Dayong Jin
Thermal quenching, in which light emission experiences a loss with increasing temperature, broadly limits luminescent efficiency at higher temperature in optical materials, such as lighting phosphors1-3and fluorescent probes4-6. Thermal quenching is commonly caused by the increased activity of phonons that leverages the non-radiative relaxation pathways. Here, we report a kind of heat-favourable phonons existing at the surface of lanthanide-doped upconversion nanomaterials to combat thermal quenching. It favours energy transfer from sensitizers to activators to pump up the intermediate excited-state upconversion process. We identify that the oxygen moiety chelating Yb3+ions, [Yb···O], is the key underpinning this enhancement. We demonstrate an approximately 2,000-fold enhancement in blue emission for 9.7 nm Yb3+-Tm3+co-doped nanoparticles at 453 K. This strategy not only provides a powerful solution to illuminate the dark layer of ultra-small upconversion nanoparticles, but also suggests a new pathway to build high-efficiency upconversion systems.