RMIT University
Browse

Aircraft joints: The interaction between corrosion protection and structural performance

journal contribution
posted on 2024-11-01, 10:15 authored by Graham Clark, Ung Hing Tiong, I Jaya
Aircraft joints feature prominently in aircraft structural degradation. Fatigue cracking and corrosion damage can reduce joint strength and degrade service life. Corrosion management can include use of paints and sealants and, increasingly, the application of Corrosion Inhibiting Compounds (CICs) which retard corrosion, by penetrating into crevices and cracks, and displacing water. A combination of coatings and CIC use can provide effective corrosion protection, but both interact - in different ways - with structural performance and overall system durability. This paper discusses the interaction between these two corrosion protection measures and fatigue performance of joints. The first issue relates to a reduction in the fatigue life of mechanically-fastened joints after application of CICs (or other lubricants) The lubricating properties of the CICs reduce the friction at the faying surface, which may change the load transfer characteristics of the joint. The paper discusses results from a test program assessing the fatigue life and failure mode of riveted lap joints; the results show a marked reduction in fatigue life for joints containing CICs, and the paper discusses the changes which may be responsible for the reduction. The second issue discussed is the degradation of protective coatings in service. Joints are key locations for coating cracking and failure, since areas such as sheet ends and fastener heads, where displacements are concentrated, will produce concentrated strain in coatings. So far, however, the potential influence of aircraft loading on coating degradation prognostics has received little attention.

History

Journal

Advanced Materials Research

Volume

275

Start page

101

End page

104

Total pages

4

Publisher

Trans Tech Publications

Place published

Switzerland

Language

English

Copyright

© (2011) Trans Tech Publications, Switzerland

Former Identifier

2006027830

Esploro creation date

2020-06-22

Fedora creation date

2012-02-24

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC