RMIT University
Browse

An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives

journal contribution
posted on 2024-11-02, 22:20 authored by Daniel Duzdevich, Janusz Petkowski, William Bains, Graham DorringtonGraham Dorrington
Exploring how life is distributed in the universe is an extraordinary interdisciplinary challenge, but increasingly subject to testable hypotheses. Biology has emerged and flourished on at least one planet, and that renders the search for life elsewhere a scientific question. We cannot hope to travel to exoplanets in pursuit of other life even if we identify convincing biosignatures, but we do have direct access to planets and moons in our solar system. It is therefore a matter of deep astrobiological interest to study their histories and environments, whether or not they harbor life, and better understand the constraints that delimit the emergence and persistence of biology in any context. In this perspective, we argue that targeted chemistry- and biology-inspired experiments are informative to the development of instruments for space missions, and essential for interpreting the data they generate. This approach is especially useful for studying Venus because if it were an exoplanet we would categorize it as Earth-like based on its mass and orbital distance, but its atmosphere and surface are decidedly not Earth-like. Here, we present a general justification for exploring the solar system from an astrobiological perspective, even destinations that may not harbor life. We introduce the extreme environments of Venus, and argue that rigorous and observation-driven experiments can guide instrument development for imminent missions to the Venusian clouds. We highlight several specific examples, including the study of organic chemistry under extreme conditions, and harnessing the fluorescent properties of molecules to make a variety of otherwise challenging measurements.

History

Related Materials

  1. 1.
    DOI - Is published in 10.3390/aerospace9100597
  2. 2.
    ISSN - Is published in 22264310

Journal

Aerospace

Volume

9

Number

597

Issue

10

Start page

1

End page

11

Total pages

11

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006119295

Esploro creation date

2023-04-05

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC