RMIT University
Browse

An Investigation of a Multidimensional CNN Combined with an Attention Mechanism Model to Resolve Small-Sample Problems in Hyperspectral Image Classification

journal contribution
posted on 2024-11-02, 19:41 authored by Jinxiang Liu, Kefei ZhangKefei Zhang, Suqin Wu, Hongtao Shi, Yindi Zhao, Yaqin Sun, Huifu Zhuang, Erjiang Fu
The convolutional neural network (CNN) method has been widely used in the classification of hyperspectral images (HSIs). However, the efficiency and accuracy of the HSI classification are inevitably degraded when small samples are available. This study proposes a multidimensional CNN model named MDAN, which is constructed with an attention mechanism, to achieve an ideal classification performance of CNN within the framework of few-shot learning. In this model, a three-dimensional (3D) convolutional layer is carried out for obtaining spatial–spectral features from the 3D volumetric data of HSI. Subsequently, the two-dimensional (2D) and one-dimensional (1D) convolutional layers further learn spatial and spectral features efficiently at an abstract level. Based on the most widely used convolutional block attention module (CBAM), this study investigates a con-volutional block self-attention module (CBSM) to improve accuracy by changing the connection ways of attention blocks. The CBSM model is used with the 2D convolutional layer for better performance of HSI classification purposes. The MDAN model is applied for classification applications using HSI, and its performance is evaluated by comparing the results with the support vector machine (SVM), 2D CNN, 3D CNN, 3D–2D–1D CNN, and CBAM. The findings of this study indicate that classification results from the MADN model show overall classification accuracies of 97.34%, 96.43%, and 92.23% for Salinas, WHU-Hi-HanChuan, and Pavia University datasets, respectively, when only 1% HSI data were used for training. The training and testing times of the MDAN model are close to those of the 3D–2D–1D CNN, which has the highest efficiency among all comparative CNN models. The attention model CBSM is introduced into MDAN, which achieves an overall accuracy of about 1% higher than that of the CBAM model. The performance of the two proposed methods is superior to the other models in terms of both efficiency and accuracy. The results sho

History

Journal

Remote Sensing

Volume

14

Number

785

Issue

3

Start page

1

End page

17

Total pages

17

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006113447

Esploro creation date

2022-11-02

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC