RMIT University
Browse

An analytical study on the nonlinear vibration of functionally graded beams

journal contribution
posted on 2024-11-01, 08:29 authored by Liao-Liang Ke, Jie YangJie Yang, Sritawat Kitipornchai
Nonlinear vibration of beams made of functionally graded materials (FGMs) is studied in this paper based on Euler-Bernoulli beam theory and von Kármán geometric nonlinearity. It is assumed that material properties follow either exponential or power law distributions through thickness direction. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. The direct numerical integration method and Runge-Kutta method are employed to find the nonlinear vibration response of FGM beams with different end supports. The effects of material property distribution and end supports on the nonlinear dynamic behavior of FGM beams are discussed. It is found that unlike homogeneous beams, FGM beams show different vibration behavior at positive and negative amplitudes due to the presence of quadratic nonlinear term arising from bending-stretching coupling effect.

History

Journal

Meccanica

Volume

45

Issue

6

Start page

743

End page

752

Total pages

10

Publisher

Springer

Place published

Dordrecht

Language

English

Copyright

© 2010 Springer

Former Identifier

2006022116

Esploro creation date

2020-06-22

Fedora creation date

2011-11-09

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC