RMIT University
Browse

An assessment of endocrine activity in Australian rivers using chemical and in vitro analyses

journal contribution
posted on 2024-11-01, 17:49 authored by Philip Scott, Michael Bartkow, Stephen Blockwell, Heather Coleman, Stuart Khan, Richard Lim, James McDonald, Helen Nice, Dayanthi NugegodaDayanthi Nugegoda, Vincent Pettigrove, Louis Tremblay, Michael Warne, Frederich Leusch
Studies on endocrine disruption in Australia have mainly focused on wastewater effluents. Limited knowledge exists regarding the relative contribution of different potential sources of endocrine active compounds (EACs) to the aquatic environment (e.g., pesticide run-off, animal farming operations, urban stormwater, industrial inputs). In this study, 73 river sites across mainland Australia were sampled quarterly for 1 year. Concentrations of 14 known EACs including natural and synthetic hormones and industrial compounds were quantified by chemical analysis. EACs were detected in 88 % of samples (250 of 285) with limits of quantification (LOQ) ranging from 0.05 to 20 ng/l. Bisphenol A (BPA; LOQ = 20 ng/l) was the most frequently detected EAC (66 %) and its predicted no-effect concentration (PNEC) was exceeded 24 times. The most common hormone was estrone, detected in 28 % of samples (LOQ = 1 ng/l), and the PNEC was also exceeded 24 times. 17α-Ethinylestradiol (LOQ = 0.05 ng/l) was detected in 10 % of samples at concentrations ranging from 0.05 to 0.17 ng/l. It was detected in many samples with no wastewater influence, and the PNEC was exceeded 13 times. In parallel to the chemical analysis, endocrine activity was assessed using a battery of CALUX bioassays. Estrogenic activity was detected in 19 % (53 of 285) of samples (LOQ = 0.1 ng/l 17β-estradiol equivalent; EEQ). Seven samples exhibited estrogenic activity (1-6.5 ng/l EEQ) greater than the PNEC for 17β-estradiol. Anti-progestagenic activity was detected in 16 % of samples (LOQ = 8 ng/l mifepristone equivalents; MifEQ), but the causative compounds are unknown. With several compounds and endocrine activity exceeding PNEC values, there is potential risk to the Australian freshwater ecosystems.

History

Related Materials

  1. 1.
    DOI - Is published in 10.1007/s11356-014-3235-7
  2. 2.
    ISSN - Is published in 09441344

Journal

Environmental Science and Pollution Research

Volume

21

Issue

22

Start page

12951

End page

12967

Total pages

17

Publisher

Springer

Place published

Germany

Language

English

Copyright

© 2014 Springer-Verlag Berlin Heidelberg

Former Identifier

2006051340

Esploro creation date

2020-06-22

Fedora creation date

2015-04-20

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC