The use of high performance fibre reinforced cementitious composites (HPFRCC) as a strengthening material for reinforced concrete (RC) structures is promising due to their compatible mechanical and physical properties, especially their pseudo strain hardening behaviour in tension. At present, most research on HPFRCC has focused on the material behaviour, investigations of structural behaviour of components strengthened using HPFRCC are scarce. In this paper, a 3D finite element model is developed using LS-DYNA implicit for the analysis of RC beams strengthened with HPFRCC. The material model for HPFRCC is calibrated based on the available experimental data. The pseudo strain hardening behaviour is accurately captured, and the appropriate failure criteria for HPFRCC are selected. The developed numerical model and modelling technique are validated by comparing the predicted results with test data from literature.