RMIT University
Browse

An energy-efficient and obstacle-avoiding routing protocol for underwater acoustic sensor networks

journal contribution
posted on 2024-11-02, 09:23 authored by Zhigang Jin, Mengge Ding, Shuo LiShuo Li
Underwater Acoustic Sensor Networks (UASNs) have become one of the promising technologies for exploring underwater natural resources and collecting scientific data from the aquatic environment. As obstacles hinder the communications among sensor nodes in UASNs, designing an effective bypass routing protocol to avoid obstacles is an urgent need. Moreover, the sensor nodes are typically powered by batteries, which are difficult to replace, restricting the network lifetime of UASNs. In this paper, an Energy-efficient and Obstacle-Avoiding Routing protocol (EOAR) is proposed not only to address the issue of marine animals acting as obstacles that interfere with communications, but also to balance the network energy according to the residual energy. In the EOAR protocol, when the current node perceives the existence of marine animals, the interference area of the animal-nodes is first calculated using the underwater acoustic channel model, and then the candidate forwarding relay set of the current node is obtained according to the constraint conditions. The optimal candidate forwarding relay is determined by a fuzzy logic-based forwarding relay selection scheme based on considering the three parameters of the candidate forwarding relay, which includes the propagation delay, the included angle between two neighbor nodes, and the residual energy. Furthermore, in order to solve the problem of energy waste caused by packet collision, we use a priority-based forwarding method to schedule the packet transmission from the candidate forwarding relay to the destination node. The proposed EOAR protocol is simulated on the Aqua-sim platform and the simulation results show that proposed protocol can increase the packet delivery ratio by 28.4% and 11.8% and can reduce the energy consumption by 53.4% and 32.7% and, respectively, comparing with the hop-by-hop vector-based forwarding routing protocol (HHVBF) and void handling using geo-opportunistic routing protocol (VHGOR).

History

Journal

Sensors

Volume

18

Number

4168

Issue

12

Start page

1

End page

19

Total pages

19

Publisher

M D P I A G

Place published

Switzerland

Language

English

Copyright

© 2018 by the authors; licensee MDPI, Basel, Switzerland.

Former Identifier

2006089323

Esploro creation date

2020-06-22

Fedora creation date

2019-01-31

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC