RMIT University
Browse

Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: Evidence of covert pathology in rats?

journal contribution
posted on 2024-11-01, 06:21 authored by Trisha JenkinsTrisha Jenkins, S VANN, E AMIN, J AGGLETON
Lesions involving the anterior thalamic nuclei stopped immediate early gene (IEG) activity in specific regions of the rat retrosplenial cortex, even though there were no apparent cytoarchitectonic changes. Discrete anterior thalamic lesions were made either by excitotoxin (Experiment 1) or radiofrequency (Experiment 2) and, following recovery, the rats foraged in a radial-arm maze in a novel room. Measurements made 6-12 weeks postsurgery showed that, in comparison with surgical controls, the thalamic lesions produced the same, selective patterns of Fos changes irrespective of method. Granular (caudal granular cortex and rostral granular cortex), but not dysgranular (dysgranular cortex), retrosplenial cortex showed a striking loss of Fos-positive cells. While a loss of between 79 and 89% of Fos-positive cells was found in the superficial laminae, the deeper layers appeared normal. In Experiments 3 and 4, rats 9-10 months postsurgery were placed in an activity box for 30 min. Anterior thalamic lesions (Experiment 3) led to a pronounced IEG decrease of both Fos and zif268 throughout the retrosplenial cortex that now included the dysgranular area. These IEG losses were found even though the same regions appeared normal using standard histological techniques. Lesions of the postrhinal cortex (Experiment 4) did not bring about a loss of retrosplenial IEG activity even though this region is also reciprocally connected with the retrosplenial cortex. This selective effect of anterior thalamic damage upon retrosplenial activity may both amplify the disruptive effects of anterior thalamic lesions and help to explain the posterior cingulate hypoactivity found in Alzheimer's disease.

History

Journal

European Journal of Neuroscience

Volume

19

Issue

12

Start page

3291

End page

3304

Total pages

14

Publisher

Wiley-Blackwell Publishing Ltd.

Place published

UK

Language

English

Copyright

© Federation of European Neuroscience Societies

Former Identifier

2006013219

Esploro creation date

2020-06-22

Fedora creation date

2013-07-17

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC