RMIT University
Browse

Are Contact Angle Measurements Useful for Oxide-Coated Liquid Metals?

journal contribution
posted on 2024-11-02, 18:20 authored by Ishan Joshipura, K. Persson, Ji Oh, Vi Khanh Truong
This work establishes that static contact angles for gallium-based liquid metals have no utility despite the continued and common use of such angles in the literature. In the presence of oxygen, these metals rapidly form a thin (∼1-3 nm) surface oxide “skin” that adheres to many surfaces and mechanically impedes its flow. This property is problematic for contact angle measurements, which presume the ability of liquids to flow freely to adopt shapes that minimize the interfacial energy. We show here that advancing angles for a metal are always high (>140°)—even on substrates to which it adheres—because the solid native oxide must rupture in tension to advance the contact line. The advancing angle for the metal depends subtly on the substrate surface chemistry but does not vary strongly with hydrophobicity of the substrate. During receding measurements, the metal droplet initially sags as the liquid withdraws from the “sac” formed by the skin and thus the contact area with the substrate initially increases despite its volumetric recession. The oxide pins at the perimeter of the deflated “sac” on all the surfaces are tested, except for certain rough surfaces. With additional withdrawal of the liquid metal, the pinned angle gets smaller until eventually the oxide “sac” collapses. Thus, static contact angles can be manipulated mechanically from 0° to >140° due to hysteresis and are therefore uninformative. We also provide recommendations and best practices for wetting experiments, which may find use in applications that use these alloys such as soft electronics, composites, and microfluidics.

History

Journal

Langmuir

Volume

37

Issue

37

Start page

10914

End page

10923

Total pages

10

Publisher

American Chemical Society

Place published

United States

Language

English

Copyright

© 2021 American Chemical Society

Former Identifier

2006110704

Esploro creation date

2022-11-10

Usage metrics

    Scholarly Works

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC