RMIT University
Browse

Arteriolar myogenic signalling mechanisms: Implications for local vascular function

journal contribution
posted on 2024-11-01, 02:32 authored by Michael Hill, Michael Davis, Gerald Meininger, Simon Potocnik, Timothy Murphy
Arterioles typically exist in a state of partial constriction that is related to the level of intraluminal pressure. This vasomotor response is a function of the vascular smooth muscle and occurs independently of neurohumoral and endothelial input. The physiological relevance of myogenic constriction relates to the setting of peripheral resistance, provision of a level of tone that vasodilators can access, and a contribution to control of capillary pressure. Despite its importance in the regulation of microvascular haemodynamics the exact cellular mechanisms linking intraluminal pressure to myogenic constriction remain uncertain. Studies using isolated, cannulated arteriole techniques, and freshly dispersed smooth muscle cells, have shown that increased intraluminal pressure/cell stretch leads to smooth muscle cell membrane depolarisation, the opening of L-type voltage-gated Ca2+ channels (VGCC), Ca2+-dependent activation of myosin light chain kinase and actomyosin-based contraction. Questions remain as to how the initial stimulus is detected and how these events lead to membrane depolarisation. A candidate pathway for the mechanosensory events involves the link between extracellular matrix proteins, cell surface integrins and the subsequent activation of intracellular signalling events.

History

Journal

Clinical Hemorheology And Microcirculation

Volume

34

Start page

67

End page

79

Total pages

13

Publisher

IOS Press

Place published

Amsterdam

Language

English

Former Identifier

2006000445

Esploro creation date

2020-06-22

Fedora creation date

2011-01-07

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC