RMIT University
Browse

Assessment of factors influencing the energy and water performance of aquatic centres

journal contribution
posted on 2024-11-02, 13:15 authored by Jean Jonathan Duverge, Priyadarsini RajagopalanPriyadarsini Rajagopalan
Aquatic centres are unlike any other type of buildings in terms of energy and water consumption. Aquatic centres can expend around seven times more energy for every square metre of building area compared to an average commercial office building and consume as much as 1,000 million litres of water each year. There has been insufficient research that examines the energy performance and water usage of aquatic centres worldwide compared to other types of buildings. Also, there are very limited studies that modelled an entire aquatic centre that has multiple indoor pools within a pool hall. The main difficulty is to model the interaction of water evaporation with the mechanical equipment which is not able to be controlled by most of the energy modelling software. Using the indoor swimming pool module integrated into the surface heat balance procedures in EnergyPlus 8.7, this paper investigates the factors that influence the energy and water performance of an aquatic centre in Victoria, Australia. Detailed information about the building envelope, electromechanical systems and operational data have been obtained from the aquatic centre. The model is calibrated against measured energy and water data (utility bills obtained from the aquatic centre). Parametric studies of several energy and water efficient features are undertaken. The simulation results revealed that the incorporation of solar pool-heating systems resulted in 15.4% energy reduction and the use of vacuum filters for backwash water usage resulted in 20% water reduction. Through creating detailed procedures and processes, this paper demonstrates that an aquatic centre can be modelled successfully despite its noted complexity.

History

Journal

Building Simulation

Volume

13

Start page

771

End page

786

Total pages

16

Publisher

Tsinghua University Press

Place published

China

Language

English

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Former Identifier

2006100307

Esploro creation date

2020-09-08

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC