RMIT University
Browse

Benefits and limitations of infrared technologies in omics research and development of natural drugs and pharmaceutical products

journal contribution
posted on 2024-11-02, 09:34 authored by Daniel Cozzolino
Properties related to individual or bioactive compounds that constitute the matrix of pharmaceutical and natural drug products (e.g., essential oils, terpenoids, flavonoids, volatile compounds, and other chemicals) are present at low concentrations (e.g., parts per million or parts per billion). Classical separation, chromatographic, and spectrometric techniques such as high-performance liquid chromatography, gas chromatography, liquid chromatography, and mass spectrometry have been used for the elucidation of isolated compounds in research and development (R&D) of drugs and pharmaceutical products. Hence, the use of standard separation, chromatographic, and spectrometric methods were found useful for fingerprinting and comparing natural and synthetic samples, as well as for identifying single active compounds. However, these methods are time consuming and require some level of preprocessing of the sample before analysis. Over the last four decades, infrared (IR) spectroscopy became one of the most attractive and used methods for analysis of agricultural-related products and plant materials providing simultaneous, rapid, and nondestructive tool to quantify major constituents in such samples. This review describes the benefits and limitations of IR spectroscopy combined with multivariate data analysis for high-throughput screening and R&D of natural drugs and pharmaceutical products.

History

Journal

Drug Development Research

Volume

73

Issue

8

Start page

504

End page

512

Total pages

9

Publisher

John Wiley & Sons

Place published

United States

Language

English

Copyright

© 2012 Wiley Periodicals, Inc

Former Identifier

2006089707

Esploro creation date

2020-06-22

Fedora creation date

2019-04-30

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC