RMIT University
Browse

Biodiesel production using modified direct transesterification by sequential use of acid-base catalysis and performance evaluation of diesel engine using various blends

journal contribution
posted on 2024-11-02, 18:08 authored by T. M. Yunus Khan, Irfan Badruddin, Manzoore Soudagar, Sanjeev Khandal, Sarfaraz Kamangar, Imran Mokashi, M Mujtaba, Nazia Hossain
Biodiesel is a seemingly suitable alternative substitute for conventional fossil fuels to run a diesel engine. In the first part of the study, the production of biodiesel by modified direct trans-esterification (MDT) is reported. An enhancement in the biodiesel yield with a considerable reduction in reaction time with the MDT method was observed. The required duration for diesel and biodiesel blending was minimized including glycerol separation time from biodiesel in the MDT method. The development in the automotive sector mainly focuses on the design of an efficient, economical, and low emission greenhouse gas diesel engine. In the current experimental work Ceiba pentandra/Nigella sativa and diesel blends (CPB10 and NSB10) were used to run the diesel engine. A variety of approaches were implemented to improve the engine performance for these combinations of fuels. The fuel injector opening pressure (IOP) was set at 240 bar, the torriodal re-entrant combustion chamber (TRCC) having a six-hole injector with a 0.2 mm orifice diameter each, provided better brake thermal efficiency (BTE) with lower emissions compared with the hemispher-ical combustion chamber (HCC) and trapezoidal combustion chamber (TCC) for both CPB10 and NSB10. CPB10 showed better performance compared with NSB10. A maximum BTE of 29.1% and 28.6% were achieved with CPB10 and NSB10, respectively, at all optimized conditions. Diesel engine operation with CPB10 and NSB10 at 23° bTDC fuel injection timing, and 240 bar IOP with TRCC can yield better results, close to a diesel run engine at 23° bTDC fuel injection timing, and 205 bar IOP with HCC.

History

Journal

Sustainability (Switzerland)

Volume

13

Number

9731

Issue

17

Start page

1

End page

17

Total pages

17

Publisher

MDPIAG

Place published

Switzerland

Language

English

Copyright

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006110947

Esploro creation date

2021-12-04

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC