RMIT University
Browse

Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site

journal contribution
posted on 2024-11-01, 21:52 authored by Warren Blyth, Esmaeil Shahsavari, Paul Morrison, Andrew BallAndrew Ball
Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons.

History

Journal

Journal of Environmental Management

Volume

162

Start page

30

End page

36

Total pages

7

Publisher

Elsevier

Place published

United Kingdom

Language

English

Copyright

© 2015 Elsevier Ltd. All rights reserved.

Former Identifier

2006055938

Esploro creation date

2020-06-22

Fedora creation date

2015-11-11

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC