RMIT University
Browse

Capability constraints to mitigate voltage fluctuations from DFIG wind farms when delivering ancillary services to the network

journal contribution
posted on 2024-11-01, 17:02 authored by Lasantha MeegahapolaLasantha Meegahapola, Sarath Perera
Majority of the wind power resources are typically sited at remote locations in power networks and generated power is transmitted through rural transmission corridors to load centres. With increased penetration level of the wind generation there is an increased requirement to provide ancillary services from distributed wind power resources, hence they are operated under different control strategies to provide ancillary services to the network. The control strategies and capability characteristics will significant impact on voltage fluctuations in distribution networks. This paper presents a comparative analysis between different wind generator control strategies (i.e. power factor control strategy, voltage control strategy and reactive power dispatch strategy) on network voltage fluctuations during variable wind conditions while considering extended reactive power capability (i.e. with both generator and power electronic converter reactive power capabilities) for the doubly-fed induction generator (DFIG). Voltage fluctuations are analysed using real wind data measured at a DFIG based wind farm, and the wind farm model was verified against real measurements. Study has shown that voltage fluctuations are exacerbated when wind generator is at mode transition (i.e. from power optimisation mode to power limitation mode). A sensitivity analysis has shown that voltage fluctuations are exacerbated due to the limitations of the reactive power capability of the DFIG, and the operating point of the DFIG power curve irrespective of the control strategy implemented at the wind generator. Furthermore, a mitigation strategy was developed as an integrated control scheme to the main control scheme in order to reduce voltage fluctuations due to wind power variations. However, effectiveness of the mitigation strategy is greatly affected by the reactive power capability of the DFIG, in particular during high wind turbulences.

History

Journal

International Journal of Electrical Power and Energy Systems

Volume

62

Start page

152

End page

162

Total pages

11

Publisher

Elsevier

Place published

United Kingdom

Language

English

Copyright

© 2014 Elsevier Ltd. All rights reserved.

Former Identifier

2006049208

Esploro creation date

2020-06-22

Fedora creation date

2015-01-16

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC