RMIT University
Browse

Cavity enhanced jet interactions in a scramjet combustor

journal contribution
posted on 2024-11-02, 09:43 authored by Tim Roos, Adrian PudseyAdrian Pudsey, Mathew Bricalli, Hideaki OgawaHideaki Ogawa
The shock structure around a fuel jet drives most of the initial mixing in a scramjet combustor, making it of interest for mixing enhancement studies. The effect of a cavity placed upstream of a fuel injector on the jet interaction of a transverse jet in a supersonic crossflow was examined numerically in this work. The cavity was found to significantly alter the structure of the typical supersonic cross-flow jet interaction. The typical horseshoe vortices were found to be absent and the barrel shock was found to be larger and more upright than in the no-cavity case. This was caused by the cavity recirculation shielding the fuel jet. The shock structure around the cavity was found to decrease the strength of the bow shock, reducing total pressure loss in the flowfield close to the injector. A small region of fluid above the cavity circulation was found to be the origin of vortical structures in the jet interaction, as opposed to the wall boundary layer in the conventional jet interaction. The presence of the fuel jet was found to alter the flow behaviour inside the cavity from closed cavity flow to open cavity flow, with the recirculation rising out of the cavity. This transition from closed to open cavity flow was found to be turbulence model dependent, however the main flow features and behaviour were shown to be maintained across turbulence models. Fuel was entrained in the cavity for the configuration under investigation, however this was dependent on fuel injection pressure, with no fuel entering the cavity at lower injection pressures.

History

Journal

Acta Astronautica

Volume

157

Start page

162

End page

179

Total pages

18

Publisher

Elsevier

Place published

United Kingdom

Language

English

Copyright

© 2019 IAA

Former Identifier

2006090060

Esploro creation date

2020-06-22

Fedora creation date

2019-03-26

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC