Current cancer chemotherapies commonly suffer from nonspecificity, drug resistance, poor bioavailability, and narrow therapeutic indices. To achieve the optimum drug efficacy, we designed a polymeric drug delivery system for targeted intracellular delivery of a clinically approved, water-soluble anticancer drug, gemcitabine hydrochloride (GEM). We utilized the unique ability of a cyclic pentapeptide cRGDfK to specifically target alpha(v)beta(3) integrin receptors that are overexpressed on SKOV-3 human ovarian cancer cells. This significantly increased the effective intracellular drug concentration even at low doses, thereby remarkably improving the chemotherapeutic potential of GEM. cRGDfK-conjugated, GEM-loaded nanoparticles reduced the nonspecific hemolytic cytotoxicity of the drug, simultaneously influencing intracellular processes such as mitochondrial membrane potential (D Psi m), reactive oxygen species (ROS) levels, and apoptosis, thereby favorably influencing drug antiproliferative efficacy.