RMIT University
Browse

Deep learning: survey of environmental and camera impacts on internet of things images

journal contribution
posted on 2024-11-03, 09:08 authored by Roopdeep Kaur, Gour Karmakar, Feng XiaFeng Xia, Muhammad Imran
Internet of Things (IoT) images are captivating growing attention because of their wide range of applications which requires visual analysis to drive automation. However, IoT images are predominantly captured from outdoor environments and thus are inherently impacted by the camera and environmental parameters which can adversely affect corresponding applications. Deep Learning (DL) has been widely adopted in the field of image processing and computer vision and can reduce the impact of these parameters on IoT images. Albeit, there are many DL-based techniques available in the current literature for analyzing and reducing the environmental and camera impacts on IoT images. However, to the best of our knowledge, no survey paper presents state-of-the-art DL-based approaches for this purpose. Motivated by this, for the first time, we present a Systematic Literature Review (SLR) of existing DL techniques available for analyzing and reducing environmental and camera lens impacts on IoT images. As part of this SLR, firstly, we reiterate and highlight the significance of IoT images in their respective applications. Secondly, we describe the DL techniques employed for assessing the environmental and camera lens distortion impacts on IoT images. Thirdly, we illustrate how DL can be effective in reducing the impact of environmental and camera lens distortion in IoT images. Finally, along with the critical reflection on the advantages and limitations of the techniques, we also present ways to address the research challenges of existing techniques and identify some further researches to advance the relevant research areas.

History

Journal

Artificial Intelligence Review

Volume

56

Start page

9605

End page

9638

Total pages

34

Publisher

Springer Dordrecht

Place published

Netherlands

Language

English

Copyright

© The Author(s) 2023

Former Identifier

2006123232

Esploro creation date

2024-03-06

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC