RMIT University
Browse

Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread

journal contribution
posted on 2024-11-03, 09:21 authored by Wenjun Liu, Margaret Brennan, Charles BrennanCharles Brennan, Linfeng You, Dawei Tu
The present study investigates the individual and interactional effects of α-amylase (6 and 10 ppm), xylanase (70 and 120 ppm) and cellulase (35 and 60 ppm) on the physicochemical characteristics and nutritional quality of Chinese steamed bread (CSB) incorporated with 15% oat bran. As a result, the single enzyme can significantly improve the specific volume and texture of CSB. Compared to the single enzyme, the combined enzymes improved the specific volume of CSB up to the highest value (2.51 mL/g) and decreased the hardness to the minimum value (233.61 g) when the concentration was 6, 70 and 35 ppm. With respect to chemical and nutritional properties, the addition of single enzyme had no great changes, while the combined enzymes (6, 70 and 35 ppm) significantly (p < 0.05) decreased the total starch from 37.52 to 34.11% and hence increased the area under the reducing sugar release curve during 2 h in vitro digestion (AUC) from 344.61 to 371.26. Consequently, enzymes combination can significantly improve the quality of oat bran CSB whereas reduce the nutritional value of oat bran CSB.

History

Related Materials

  1. 1.
    DOI - Is published in 10.3390/foods12020273
  2. 2.
    ISSN - Is published in 23048158

Journal

Foods

Volume

12

Number

273

Issue

2

Start page

1

End page

11

Total pages

11

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006122484

Esploro creation date

2023-05-29

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC