RMIT University
Browse

Effect of pre-treatment of crystallized bioactive glass with cell culture media on structure, degradability, and biocompatibility

journal contribution
posted on 2024-11-02, 11:07 authored by Boonlom Thavornyutikarn, Bryce Feltis, Paul WrightPaul Wright, Terence Turney
The silicate glass 45S5 Bioglass® (BG) is a potential scaffold material for bone regeneration because of its excellent bioactivity, biocompatibility and ability to form a strong bond with bone tissues, via the formation of an apatite layer on its surface. The evaluation of in vitro bioactivity in physiological body fluids, whilst challenging, can offer some insights for developing the bone-bonding ability of these glasses in vivo. In this study, we investigated the influence of three different cell culture and tissue fluid-like solutions on the dissolution and calcium-phosphate (CaP) based re-precipitation behaviour at the glass-liquid interface. We also examined pre-treatment of BG with these biological solutions, and how its influence on bone-forming MG-63 osteoblastic cell proliferation, viability and adhesion. The biological solutions used in this comparative study were: commercial cell culture medium (DMEM), a DMEM solution without organic components (DML) and a simulated body fluid (SBF), incorporating TRIS-buffer. Incubation of BG in these solutions over 28 days resulted in differences in weight loss, solution pH and ion release, and the development of CaP-based surface layers. XRD and FT-IR analyses showed clear differences in the characteristics of the CaP-based coating layers formed by the different solutions. The interfacial reactivity between the glass and the solutions depended on the composition and properties of the solutions. The formation of the CaP layer occurred more rapidly in SBF due to the presence of TRIS-buffer, which also significantly accelerated glass dissolution, further reducing the BG mass in SBF. MG-63 osteoblasts proliferated and spread more rapidly across the surfaces of all pre-conditioned BG, compared to fresh BG. The experimental results of this work help clarify differences between in vitro bioactivity of BG observed in cell culture solutions and in vivo BG bioactivity.

History

Journal

Materials Science and Engineering C: Materials for Biological Applications

Volume

97

Start page

188

End page

197

Total pages

10

Publisher

Elsevier BV

Place published

Netherlands

Language

English

Copyright

© 2018 Elsevier B.V.

Former Identifier

2006091863

Esploro creation date

2020-06-22

Fedora creation date

2019-07-18

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC