RMIT University
Browse

Electrochemical and photochemical routes to semiconducting transition metal-tetracyanoquinodimethane coordination polymers

journal contribution
posted on 2024-11-01, 18:02 authored by A NAFADY, Anthony O'Mullane, Alan Bond
TCNQ- radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some materials such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation-growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ- and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallization on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ can also be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.

History

Journal

Coordination Chemistry Reviews

Volume

268

Start page

101

End page

142

Total pages

42

Publisher

Elsevier

Place published

Netherlands

Language

English

Copyright

© 2014 Elsevier B.V. All rights reserved.

Former Identifier

2006051357

Esploro creation date

2020-06-22

Fedora creation date

2015-06-10

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC