RMIT University
Browse

Electromagnetic interference shielding of 3D-printed graphene–polyamide-6 composites with 3D-printed morphology

journal contribution
posted on 2024-11-02, 17:12 authored by Kok Peng Marcian Lee, Thomas Baum, Robert ShanksRobert Shanks, Fugen DaverFugen Daver
Graphene–polyamide-6 composite (GC) filament was 3D-printed via melt extrusion (ME). The influence of specimen thickness and internal geometric designs on electromagnetic interference shielding effectiveness (EMI SE) and dielectric properties in the X-band frequency range (8.2–12.4 GHz) was investigated. Increasing specimen thickness from 1 to 5 mm did not improve EMI SE due to impedance matching and the associated reductions in electromagnetic (EM) wave reflection. It was demonstrated that the introduction of suitable internal geometric assemblies avoided impedance matching and significantly improved EMI SE. A material model for simulating EM response of 3D-printed GC was developed and experimentally verified. It was found that different internal geometric designs each displayed unique EM responses. However, geometrical inaccuracies in printed specimens resulted in differences between experimental EM response and that predicted by simulations. These inaccuracies stem from the small size of the features relative to the printer resolution and the ME printing methodology. Therefore, the limitations of a printer when replicating complex geometries must be considered to effectively apply internal geometric designs for enhancing EMI SE of 3D-printed components.

History

Journal

Additive Manufacturing

Volume

43

Number

102020

Start page

1

End page

12

Total pages

12

Publisher

Elsevier

Place published

Netherlands

Language

English

Copyright

Crown Copyright © 2021 Published by Elsevier B.V. All rights reserved.

Former Identifier

2006107765

Esploro creation date

2022-10-22

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC