RMIT University
Browse

Enhanced Spectral Broadening of Femtosecond Optical Pulses in Silicon Nanowires Integrated with 2D Graphene Oxide Films

journal contribution
posted on 2024-11-02, 20:55 authored by Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Linnan Jia, Baohua JiaBaohua Jia, David Moss
We experimentally demonstrate enhanced spectral broadening of femtosecond optical pulses after propagation through silicon-on-insulator (SOI) nanowire waveguides integrated with two-dimensional (2D) graphene oxide (GO) films. Owing to the strong mode overlap between the SOI nanowires and the GO films with a high Kerr nonlinearity, the self-phase modulation (SPM) process in the hybrid waveguides is significantly enhanced, resulting in greatly improved spectral broadening of the femtosecond optical pulses. A solution-based, transfer-free coating method is used to integrate GO films onto the SOI nanowires with precise control of the film thickness. Detailed SPM measurements using femtosecond optical pulses are carried out, achieving a broadening factor of up to ~4.3 for a device with 0.4-mm-long, 2 layers of GO. By fitting the experimental results with the theory, we obtain an improvement in the waveguide nonlinear parameter by a factor of ~3.5 and in the effective nonlinear figure of merit (FOM) by a factor of ~3.8, relative to the uncoated waveguide. Finally, we discuss the influence of GO film length on the spectral broadening and compare the nonlinear optical performance of different integrated waveguides coated with GO films. These results confirm the improved nonlinear optical performance of silicon devices integrated with 2D GO films.

History

Journal

Micromachines

Volume

13

Number

756

Issue

5

Start page

1

End page

14

Total pages

14

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006116810

Esploro creation date

2022-10-26

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC