RMIT University
Browse

Estimating parameters of the three-parameter Weibull distribution using a neural network

journal contribution
posted on 2024-11-01, 08:14 authored by Babak AbbasiBabak Abbasi, Luis Rabelo, Mehdi Hosseinkouchack
Weibull distributions play an important role in reliability studies and have many applications in engineering. It normally appears in the statistical scripts as having two parameters, making it easy to estimate its parameters. However, once you go beyond the two parameter distribution, things become complicated. For example, estimating the parameters of a three-parameter Weibull distribution has historically been a complicated and sometimes contentious line of research since classical estimation procedures such as Maximum Likelihood Estimation (MLE) have become almost too complicated to implement. In this paper, we will discuss an approach that takes advantage of Artificial Neural Networks (ANN), which allow us to propose a simple neural network that simultaneously estimates the three parameters. The ANN neural network exploits the concept of the moment method to estimate Weibull parameters using mean, standard deviation, median, skewness and kurtosis. To demonstrate the power of the proposed ANN-based method we conduct an extensive simulation study and compare the results of the proposed method with an MLE and two moment-based methods.

History

Related Materials

  1. 1.
    DOI - Is published in 10.1504/EJIE.2008.018438
  2. 2.
    ISSN - Is published in 17515254

Journal

European Journal of Industrial Engineering

Volume

2

Issue

4

Start page

428

End page

445

Total pages

18

Publisher

Inderscience Publishers

Place published

United Kingdom

Language

English

Copyright

© 2008, Inderscience Publishers.

Former Identifier

2006022928

Esploro creation date

2020-06-22

Fedora creation date

2011-11-18