RMIT University
Browse

Experimental studies of hydrocarbon separation on zeolites, activated carbons and MOFs for applications in natural gas processing

journal contribution
posted on 2024-11-02, 05:58 authored by Yunxia Yang, Nick Burke, Suhaib Ali, Stanley Huang, Seng Lim, Yonggang Zhu
Separation of minor hydrocarbon components in natural gas is necessary prior to liquefaction to avoid operational (plugging of equipment) and product specification issues. While there have been many studies describing adsorption of gases on solid materials there have been relatively few focused on decreasing concentrations of light hydrocarbons in methane in non-equilibrium experimental configurations. In order to best understand the chemistry of competitive adsorption of saturated hydrocarbons for gas processing applications we investigated light hydrocarbon dynamic adsorption properties on 16 solid adsorbents of different structures and chemistries. The best adsorbents, as determined by adsorption capacity, were tested for their ability to separate higher molecular weight hydrocarbons from methane. It is found that for charged frameworks, the induced dipole moment between the adsorbent and adsorbate plays the most important role in adsorption capacity. For uncharged frameworks, pore size plays the critical role in adsorption: micropores are more effective than mesopores. For separation of mixtures of methane, ethane, propane and butane, the kinetics of adsorption must also be considered. Of the materials tested, a carbon derived from coal and activated with steam (carbon #5 (37771)), zeolite KX and zeolite 5A were the best in terms of adsorption and separation capability. These materials show promise for separating light hydrocarbons of similar chemical nature.

History

Journal

RSC Advances

Volume

7

Issue

21

Start page

12629

End page

12638

Total pages

10

Publisher

Royal Society of Chemistry

Place published

United Kingdom

Language

English

Copyright

© 2017 The Royal Society of Chemistry.

Former Identifier

2006078904

Esploro creation date

2020-06-22

Fedora creation date

2019-03-26

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC