RMIT University
Browse

Expression of the plasminogen system in the physiological mouse ovary and in the pathological polycystic ovary syndrome (PCOS) state

Download (6.51 MB)
journal contribution
posted on 2024-11-23, 11:04 authored by Genia Burchall, Dodie PouniotisDodie Pouniotis, Helena Teede, Sanjeeva Ranasinha, Kirsty Walters, Terrence PivaTerrence Piva
Background: The fibrinolytic system and its inhibitors play a number of roles, apart from their function in blood haemostasis and thrombosis, namely in ovarian folliculogenesis and in ovulation. Plasminogen is converted to active plasmin at the time of follicular rupture through a decrease in plasminogen activator inhibitor-1 (PAI-1) and an increase in plasminogen activators. Oligo-/anovulation and follicle arrest are key characteristics of PCOS, but studies evaluating fibrinolytic/proteolytic markers within human or animal PCOS ovaries are lacking. We aimed to investigate and compare the expression and distribution of the plasminogen system markers in PCOS and control ovaries. Methods: A hyperandrogenised PCOS mouse model was used that mimics the ovarian, endocrine and metabolic features of the human condition. Immunohistochemistry and digital image analysis were used to investigate and compare fibrinolytic/proteolytic markers plasminogen, plasminogen/plasmin, tissue plasminogen activator, urokinase plasminogen activator and inhibitor PAI-1 in PCOS and control ovaries. Student's t-test was used to compare data sets for normally distributed data and Wilcoxon-Mann Whitney test for non-normally distributed data. Results: We noted differences in the ovarian distribution of PAI-1 that was expressed throughout the PCOS ovary, unlike the peripheral distribution observed in control ovaries. Plasminogen was present in small follicles only in PCOS ovaries but not in small follicles of control ovaries. When we assessed and compared PAI-1 expression within follicles of different developmental stages we also noted significant differences for both the PCOS and control ovaries. While we noted differences in distribution and expression within specific ovarian structures, no differences were noted in the overall ovarian expression of markers assessed between acyclical PCOS mice and control mice at the diestrus stage of the estrous cycle. Conclusions: Our novel study, that comprehensively assessed the fibrinolytic/proteolytic system in the mouse ovary, showed the expression, differential localisation and a potential role for the plasminogen system in the physiological mouse ovary and in PCOS. Androgens may be involved in regulating expression of the ovarian plasminogen system. Further studies evaluating these markers at different time-points of ovulation may help to further clarify both physiological and potential pathological actions these markers play in ovulatory processes distorted in PCOS.

History

Journal

Reproductive Biology and Endocrinology

Volume

17

Number

33

Issue

1

Start page

1

End page

14

Total pages

14

Publisher

BioMed Central

Place published

United Kingdom

Language

English

Copyright

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Former Identifier

2006091213

Esploro creation date

2020-06-22

Fedora creation date

2019-05-23

Open access

  • Yes

Usage metrics

    Scholarly Works

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC