RMIT University
Browse

Femtosecond X-ray protein nanocrystallography

journal contribution
posted on 2024-11-02, 08:10 authored by Henry Chapman, Petra Fromme, Anton Barty, Thomas White, Andrew MartinAndrew Martin
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction snapshotsg are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (4200nm to 21/4m in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

History

Journal

Nature

Volume

470

Issue

7332

Start page

73

End page

78

Total pages

6

Publisher

Nature Publishing Group

Place published

United Kingdom

Language

English

Copyright

© 2011 Macmillan Publishers

Former Identifier

2006087073

Esploro creation date

2020-06-22

Fedora creation date

2019-04-30

Usage metrics

    Scholarly Works

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC