RMIT University
Browse

Field-only surface integral equations: Scattering from a dielectric body

journal contribution
posted on 2024-11-02, 12:45 authored by Qiang SunQiang Sun, Evert Klaseboer, Alex Yuffa, Derek Chan
An efficient field-only nonsingular surface integral method to solve Maxwell’s equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector wave equation and the divergence-free constraint are satisfied inside and outside the scatterer. The divergence-free condition is replaced by an equivalent boundary condition that relates the normal derivatives of the electric field across the surface of the scatterer. Also, the continuity and jump conditions on the electric and magnetic fields are expressed in terms of the electric field across the surface of the scatterer. Together with these boundary conditions, the scalar Helmholtz equation for the components of the electric field inside and outside the scatterer is solved by a fully desingularized surface integral method. Compared with the most popular surface integral methods based on the Stratton–Chu formulation or the Poggio–Miller–Chew–Harrington–Wu–Tsai (PMCHWT) formulation, our method is conceptually simpler and numerically straightforward because there is no need to introduce intermediate quantities such as surface currents, and the use of complicated vector basis functions can be avoided altogether. Also, our method is not affected by numerical issues such as the zero-frequency catastrophe and does not contain integrals with (strong) singularities. To illustrate the robustness and versatility of our method, we show examples in the Rayleigh, Mie, and geometrical optics scattering regimes. Given the symmetry between the electric field and the magnetic field, our theoretical framework can also be used to solve for the magnetic field.

History

Journal

Journal of the Optical Society of America A: Optics and Image Science, and Vision

Volume

37

Issue

2

Start page

284

End page

293

Total pages

10

Publisher

Optical Society of America

Place published

United States

Language

English

Copyright

© 2020 Optical Society of America

Former Identifier

2006099635

Esploro creation date

2020-09-08

Usage metrics

    Scholarly Works

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC