Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces
journal contribution
posted on 2024-11-01, 08:23authored byX Jia, Jie YangJie Yang, Sritawat Kitipornchai, C Lim
This paper investigates the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching and the influence of Casimir force. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. The Euler¿Bernoulli beam theory with von Karman type nonlinear kinematics is applied in the theoretical formulation. The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using the differential quadrature method. The natural frequencies and mode shapes of micro-switches for four different boundary conditions (i.e. clamped¿clamped, clamped¿simply supported, simply supported and clamped¿free) are obtained. The solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of geometric nonlinearity, Casimir force, axial residual stress and material composition for the natural frequencies.