RMIT University
Browse

Graphene Oxide Waveguide and Micro-Ring Resonator Polarizers

journal contribution
posted on 2024-11-03, 09:34 authored by Jiayang Wu, Yunyi Yang, Yang Qu, Xingyuan Xu, Yao Liang, Sai Chu, Brent Little, Roberto Morandotti, Baohua JiaBaohua Jia, David Moss
Integrated waveguide polarizers and polarization-selective micro-ring resonators (MRRs) incorporated with graphene oxide (GO) films are experimentally demonstrated. CMOS-compatible doped silica waveguides and MRRs with both uniformly coated and patterned GO films are fabricated based on a large-area, transfer-free, layer-by-layer GO coating method that yields precise control of the film thickness. Photolithography and lift-off processes are used to achieve photolithographic patterning of GO films with precise control of the placement and coating length. Detailed measurements are performed to characterize the performance of the devices versus GO film thickness and coating length as a function of polarization, wavelength and power. A high polarization dependent loss of ≈53.8 dB is achieved for the waveguide coated with 2-mm-long patterned GO films. It is found that intrinsic film material loss anisotropy dominates the performance for less than 20 layers whereas polarization-dependent mode overlap dominates for thicker layers. For the MRRs, the GO coating length is reduced to 50 µm, yielding a ≈8.3 dB polarization extinction ratio between transverse electric (TE) and transverse magnetic (TM) resonances. These results offer interesting physical insights and trends of the layered GO films and demonstrate the effectiveness of introducing GO films into photonic-integrated devices to realize high-performance polarization selective components.

Funding

High-performance smart solar powered on-chip capacitive energy storage

Australian Research Council

Find out more...

CMOS compatible nonlinear photonic integrated circuits

Australian Research Council

Find out more...

History

Journal

Laser and Photonics Reviews

Volume

13

Number

1900056

Issue

9

Start page

1

End page

11

Total pages

11

Publisher

Wiley-VCH Verlag GmbH & Co. KGaA

Place published

Germany

Language

English

Copyright

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Former Identifier

2006122329

Esploro creation date

2023-05-18

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC