RMIT University
Browse

High-Fidelity Dynamics Modelling for the Design of a High-Altitude Supersonic Sounding Rocket

journal contribution
posted on 2024-11-03, 08:59 authored by Benjamin Milne, Sean SamsonSean Samson, Robert Carrese, Alessandro GardiAlessandro Gardi, Roberto SabatiniRoberto Sabatini
The accurate modelling and simulation of vehicle dynamics is a fundamental prerequisite for the design and experimental flight testing of aerospace vehicles. In the case of high-altitude supersonic sounding rockets, it is critically important to produce realistic trajectory predictions in a representative range of operational and environmental conditions as well as to produce reliable probability distributions of terminal locations. This article proposes a methodology to develop high-fidelity flight dynamics models that accurately capture aeroelastic, turbulence, atmospheric and other effects relevant to sounding rockets. The significance of establishing a high-fidelity model and of addressing such a problem in the context of developing a digital twin are discussed upfront, together with the key tools utilised in the analysis. In addition to state-of-the-art computational methods to determine the aerodynamic forces, moments and mass changes in various flight regimes (including parachute release), a detailed methodology for incorporating the dynamic aeroelastic response of the rocket is presented. The validity of the proposed method is demonstrated through a simulation case study, which utilises data from an existing rocket prototype. Results corroborate the correct implementation of the proposed algorithms and provide foundations for future research on virtual sensing and digital twin for autonomous navigation and guidance.

History

Journal

Designs

Volume

7

Number

32

Issue

1

Start page

1

End page

39

Total pages

39

Publisher

MDPI AG

Place published

Switzerland

Language

English

Copyright

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006122536

Esploro creation date

2023-06-01