RMIT University
Browse

High-Performance Water Harvester Framework for Triphasic and Synchronous Detection of Assorted Organotoxins with Site-Memory-Reliant Security Encryption via pH-Triggered Fluoroswitching

journal contribution
posted on 2024-11-02, 20:16 authored by Ranadip Goswami, Sandeep Das, Nilanjan Seal, Biswarup Pathak, Subhadip Neogi
Atmospheric water harvesting, triphasic detection of water contaminants, and advanced antiforgery measures are among important global agendas, where metal-organic frameworks (MOFs), as an incipient class of multifaceted materials, can affect substantial development of individual properties at the interface of tailor-made fabrication. The chemically robust and microporous MOF, encompassing contrasting pore functionalization, exhibits an S-shaped water adsorption curve at 300 K with a steep pore-filling step near P/P-0 = 0.5 and shows reversible uptake-release performance. Density functional theory (DFT) studies provide atomistic-level snapshots of sequential insertion of H2O molecules inside the porous channels and also portray H-bonding interactions with polar functional sites in the two-fold interpenetrated structure. The highly emissive attribute with an electron-pull system benefits the fast-responsive framework and highly regenerable detection of four classes of organic pollutants (2,4,6-trinitrophenol (TNP), dichloran, aniline, and nicotine) in water at a record-low sensitivity. In addition to solid-, liquid-, and vapor-phase sensing, host-guest-mediated reversible fluoroswitching is validated through repetitive paper-strip monitoring and image-based detection of food sample contamination. Structure-property synergism in the electron transfer route of sensing is justified from DFT calculations that describe the reshuffling of molecular orbital energy levels in an electron-rich network by each organotoxin, besides evidencing framework-analyte supramolecular interactions. The MOF further delineates the pH-responsive luminescence defect repair via site-specific emission modulation, wherein reversibly alternated "encrypted and decrypted" states are utilized as highly reusable anticounterfeiting labels over multiple platforms and conceptualized as artificial molecular switches. Aiming at self-calibrated, advanced security claims, a NOR-OR coupled logic gate is devised based on commensurate fluorescence-cum-real-time synchronous detection of organic and inorganic (HCl and NH3) pollutants.

History

Journal

ACS Applied Materials and Interfaces

Volume

13

Issue

29

Start page

34012

End page

34026

Total pages

15

Publisher

American Chemical Society

Place published

United States

Language

English

Copyright

© 2021 American Chemical Society

Former Identifier

2006115538

Esploro creation date

2023-04-28