RMIT University
Browse

High-activity phosphine-free selenium precursor for semiconductor nanocrystal growth

journal contribution
posted on 2024-11-01, 09:24 authored by Craig Bullen, Joel van EmbdenJoel van Embden, Jacek Jasieniak, Joanna Cosgriff, Roger Mulder, Ezio Rizzardo, Min Gu, Colin Raston
A phosphine-free selenium nanocrystal precursor solution has been synthesized by heating elemental selenium powder in 1-octadecene (ODE). This mixture was characterized by UV-vis absorption, photoluminescence excitation (PLE), nuclear magnetic resonance (NMR), Se X-ray absorption spectroscopy (Se-XAS), electron impact mass spectrometry (EIMS), and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish identifiable spectroscopic and chemical signatures that can be correlated to the chemical efficacy of the precursor for the growth of metal selenide nanocrystals. Highly temperature dependent rates of selenium dissolution and deactivation of the resultant precursor are demonstrated and optimal preparation times for the most reactive precursor are determined. Distinctive features in the PLE spectrum provide a rapid estimate of the reactivity of the as-prepared Se-ODE precursor. NMR and XAS data strongly indicate both Se-Se and Se-C bonding are present in the precursor solution, suggesting that simple selenium dissolution. This is also confirmed by (EI) mass spectra where (ODE+2Se) and (2ODE+2Se) were only found in the most active Se-ODE solutions. Se-ODE is not only chemically more benign than the traditionally employed trioctylphosphine selenide (TOPSe), but it is also demonstrated that optimized Se-ODE has nearly twice the reactivity of TOPSe for Se deposition onto CdSe core particles at 220 °C.

History

Journal

Chemistry of Materials

Volume

22

Issue

14

Start page

4135

End page

4143

Total pages

9

Publisher

American Chemical Society

Place published

United States

Language

English

Copyright

© 2010 American Chemical Society.

Former Identifier

2006028217

Esploro creation date

2020-06-22

Fedora creation date

2012-10-26

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC