RMIT University
Browse

Improving accuracy and lowering cost in crowdsourcing through an unsupervised expertise estimation approach

journal contribution
posted on 2024-11-01, 07:29 authored by Alireza Moayedikia, William Yeoh, Kok-Leong OngKok-Leong Ong, Yee Ling BooYee Ling Boo
Crowdsourcing refers to distributing microtasks to an unknown group of online workers. Given that workers have varying expertise levels, a major research challenge for crowdsourcing is solving the problems of untargeted task assignment and unestimated aggregation of results. Although existing approaches can estimate the expertise of workers and use expertise information to allocate tasks, the effectiveness of these approaches is limited for the following reasons: 1)reliance on human intervention; 2)dependence on the type of answers; 3)non-sparseness; 4)post-expertise estimation. To overcome these limitations of crowdsourcing, this paper introduces an unsupervised approach to expertise estimation in microtask crowdsourcing that is independent of answer type, which is named ROUgh set based eXpertise estimation (ROUX). We consider the problem of expertise estimation as a metaheuristic optimization search problem, and integrate it with a rough set to better estimate the expertise of each online worker. Further, ROUX uses the expertise rating of workers for task assignment to maximize the accuracy of the results and lower the cost. Extensive experimental evaluations using real-world datasets show that ROUX performs remarkably in accuracy improvement and cost efficacy.

History

Journal

Decision Support Systems

Volume

122

Number

113065

Start page

1

End page

10

Total pages

10

Publisher

Elsevier BV

Place published

Netherlands

Language

English

Copyright

© 2019 Elsevier B.V.

Former Identifier

2006092682

Esploro creation date

2020-06-22

Fedora creation date

2019-08-06

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC