RMIT University
Browse

In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds

journal contribution
posted on 2024-11-02, 19:23 authored by Yun Zhang, Peng Wang, Jiyong Jin, Lan Li, Si-yuan He, Ping Zhou, Qing Jiang, Cuie WenCuie Wen
Recent evidence shows that the curvature of porous scaffold plays a significant role in guiding tissue regeneration. However, the underlying mechanism remains controversial to date. In this study, we developed an in silico model to simulate the effect of surface curvature on the osteoconduction of scaffold implants, which comprises the primary aspects of bone regeneration. Selective laser melting was used to manufacture a titanium scaffold with channels representative of different strut curvatures for in vivo assessment. The titanium scaffold was implanted in the femur condyles of rabbits to validate the mathematical model. Simulation results suggest that the curvature affected the distribution of growth factors and subsequently induced the migration of osteoblast lineage cells and bone deposition to the locations with higher curvature. The predictions of the mathematical model are in good agreement with the in vivo assessment results, in which newly formed bone first appeared adjacent to the vertices of the major axes in elliptical channels. The mechanism of curvature-guided osteoconduction may provide a guide for the design optimization of scaffold implants to achieve enhanced bone ingrowth.

History

Journal

Biotechnology and Bioengineering

Volume

119

Issue

2

Start page

591

End page

604

Total pages

14

Publisher

John Wiley & Sons, Inc.

Place published

United States

Language

English

Copyright

© 2021 Wiley Periodicals LLC

Former Identifier

2006113714

Esploro creation date

2023-04-28

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC