RMIT University
Browse

Machine Learning Applications for Short Reach Optical Communication

journal contribution
posted on 2024-11-02, 19:48 authored by Yapeng Xie, Yitong Wang, Kandeepan SithamparanathanKandeepan Sithamparanathan, Ke WangKe Wang
With the rapid development of optical communication systems, more advanced techniques conventionally used in long-haul transmissions have gradually entered systems covering shorter distances below 100 km, where higher-speed connections are required in various applications, such as the optical access networks, inter-and intra-data center interconnects, mobile fronthaul, and in-building and indoor communications. One of the techniques that has attracted intensive interests in short-reach optical communications is machine learning (ML). Due to its robust problem-solving, decision-making, and pattern recognition capabilities, ML techniques have become an essential solu-tion for many challenging aspects. In particular, taking advantage of their high accuracy, adaptability, and implementation efficiency, ML has been widely studied in short-reach optical communications for optical performance monitoring (OPM), modulation format identification (MFI), signal processing and in-building/indoor optical wireless communications. Compared with long-reach communica-tions, the ML techniques used in short-reach communications have more stringent complexity and cost requirements, and also need to be more sensitive. In this paper, a comprehensive review of various ML methods and their applications in short-reach optical communications are presented and discussed, focusing on existing and potential advantages, limitations and prospective trends.

History

Journal

Photonics

Volume

9

Number

30

Issue

1

Start page

1

End page

38

Total pages

38

Publisher

MDPI

Place published

Switzerland

Language

English

Copyright

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Former Identifier

2006115324

Esploro creation date

2022-11-09

Usage metrics

    Scholarly Works

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC