RMIT University
Browse

Measurement of intrameniscal forces and stresses by two different miniature transducers

journal contribution
posted on 2024-11-01, 06:57 authored by P Goh, Franz Fuss, T Yanai, A Ritchie
Injuries to the knee joint are common and often have an adverse impact on a patient's quality of life. It is therefore important to understand the load transfer mechanism of the knee, especially with regard to the loading of the menisci in different positions and under different conditions. To date, only contact pressure between joint surfaces and menisci, as well as circumferential strain, have been measured by pressure sensors and strain gauges. Therefore, the aim of this study was to investigate the spread of axial load within the menisci and the effect of the knee flexion angle on the axial load within the menisci. Intrameniscal forces were measured with Fiber Bragg Grating (FBG) sensors and conductive rubber sensors in porcine knee joint specimens. The changes in pressure were measured under different loading conditions. Measurement of the intrameniscal pressure is feasible. Although, there is some existence of variations in readings, some trends can be inferred. From the overall trend, it was observed that higher stress occurs at lateral central and lateral posterior regions. As the occurrences of injuries are mainly at the medial meniscus, this may imply that the level of stress is secondary to the mobility of the meniscus in incidents of injuries. It was found that the posterior meniscofemoral ligament plays a crucial role in the mechanics of the lateral meniscus

History

Journal

Journal of Mechanics in Biology and Medicine

Volume

7

Issue

1

Start page

65

End page

74

Total pages

10

Publisher

World Scientific Publishing Co. Pte. Ltd.

Place published

Singapore

Language

English

Copyright

© 2007 World Scientific Publishing Co. Pte. Ltd.

Former Identifier

2006014994

Esploro creation date

2020-06-22

Fedora creation date

2013-02-19

Usage metrics

    Scholarly Works

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC